W2 - Lesson 4: Surface Area and Volume
## Important Concepts of Grade 6 Mathematics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 - Lesson 1</td>
<td>Basic Facts, Basic Operations, and Integers</td>
</tr>
<tr>
<td>W1 - Lesson 2</td>
<td>Place Value, Whole Numbers, Decimals, and Common Fractions</td>
</tr>
<tr>
<td>W1 - Lesson 3</td>
<td>Improper Fractions and Mixed Numbers</td>
</tr>
<tr>
<td>W1 - Lesson 4</td>
<td>Ratios and Percents</td>
</tr>
<tr>
<td>W1 - Lesson 5</td>
<td>Number Operations with Decimals</td>
</tr>
<tr>
<td>W1 - Quiz</td>
<td></td>
</tr>
<tr>
<td>W2 - Lesson 1</td>
<td>Factors, Multiples, and Prime Factorizations</td>
</tr>
<tr>
<td>W2 - Lesson 2</td>
<td>Metric Measurement</td>
</tr>
<tr>
<td>W2 - Lesson 3</td>
<td>Perimeter and Area</td>
</tr>
<tr>
<td>W2 - Lesson 4</td>
<td>Surface Area and Volume</td>
</tr>
<tr>
<td>W2 - Lesson 5</td>
<td>Working with Angles and Drawing Objects and Shapes</td>
</tr>
<tr>
<td>W2 - Quiz</td>
<td></td>
</tr>
<tr>
<td>W3 - Lesson 1</td>
<td>Transformations</td>
</tr>
<tr>
<td>W3 - Lesson 2</td>
<td>Bar Graphs, Line Graphs, and Circle Graphs</td>
</tr>
<tr>
<td>W3 - Lesson 3</td>
<td>Collecting and Analyzing Data</td>
</tr>
<tr>
<td>W3 - Lesson 4</td>
<td>Number Patterns, Magic Squares, and Problem Solving</td>
</tr>
<tr>
<td>W3 - Lesson 5</td>
<td>Probability and Outcomes</td>
</tr>
<tr>
<td>W3 - Quiz</td>
<td></td>
</tr>
</tbody>
</table>

### Materials Required:
A textbook is not needed. This is a stand-alone course.

Mathematics Grade 6  
Version 5  
Preview/Review W2 - Lesson 4

Publisher: Alberta Distance Learning Centre  
Author: Elgin Pawlak  
In-House Teacher: Sue Rees

Project Coordinator: Dennis McCarthy  
Preview/Review Publishing Coordinating Team: Nina Johnson, Laura Renkema, and Donna Silgard

Alberta Distance Learning Centre has an Internet site that you may find useful. The address is as follows: [http://www.adlc.ca](http://www.adlc.ca)

The use of the Internet is optional. Exploring the electronic information superhighway can be educational and entertaining. However, be aware that these computer networks are not censored. Students may unintentionally or purposely find articles on the Internet that may be offensive or inappropriate. As well, the sources of information are not always cited and the content may not be accurate. Therefore, students may wish to confirm facts with a second source.

**ALL RIGHTS RESERVED**

Copyright © 2007, by Alberta Distance Learning Centre, 4601-63 Avenue, Barrhead, Alberta, Canada, T7N 1P4. Additional copies may be obtained from Alberta Distance Learning Centre.

No part of this courseware may be reproduced or transmitted in any form, electronic or mechanical, including photocopying (unless otherwise indicated), recording, or any information storage and retrieval system, without the written permission of Alberta Distance Learning Centre.

Every effort has been made both to provide proper acknowledgement of the original source and to comply with copyright law. If cases are identified where this effort has been unsuccessful, please notify Alberta Distance Learning Centre so that appropriate corrective action can be taken.

**IT IS STRICTLY PROHIBITED TO COPY ANY PART OF THESE MATERIALS UNDER THE TERMS OF A LICENCE FROM A COLLECTIVE OR A LICENSING BODY.**
Preview/Review Concepts for Grade Six Mathematics

W2 - Lesson 4: Surface Area and Volume
OBJECTIVES

By the end of this lesson, you should

- understand and calculate volume of figures
- understand and calculate surface area of figures
- solve problems of surface area and volume using metric measurement

GLOSSARY

rectangular prism - a three-dimensional figure whose surfaces are all rectangular; the shape of a shoebox

volume - the amount of space taken up by a three-dimensional figure; often similar to capacity

surface area - the total area of the surfaces of a figure
W2 - Lesson 4: Surface Area and Volume

Welcome to W2 - Lesson 4! This lesson is about surface area and volume. You will use your skills in metric measurement to find volumes and total areas. The lesson has three topics:

- Volume
- Surface Area
- Problem Solving

How much paper do you need to wrap the birthday gift you bought for your friend?

Volume

The amount of space taken up by a three-dimensional figure is its **volume**. Three-dimensional means the figure takes up space in three directions: length, width, and height. The units of measurement for volume are cubed units. The most commonly used units are mm³ (cubic millimetres), cm³ (cubic centimetres), and m³ (cubic metres).

The volume of a regular figure is calculated by multiplying length, width, and height.

\[
Volume = \text{base} \times \text{width} \times \text{height} \\
V = b \times w \times h \quad \text{or} \quad V = bwh
\]

A **rectangular prism** is a three-dimensional figure whose surfaces are all rectangular in shape. A rectangular prism is shaped like a shoebox with six flat surfaces.

We use the formula to find its volume:

\[
V = b \times w \times h \\
= 30 \times 10 \times 20 \\
= 6000 \text{ cm}^3
\]

A **cube** is a rectangular prism with all sides equal. Perhaps you could also call it a square prism.
Questions

1. Use the formula $V = b \times w \times h$ to find the volume of the following rectangular prisms. For each question, write the formula, do the calculations, and then write the answer with the correct units for volume.

   a. 
   
   \[
   \begin{array}{c}
   \text{base 5 cm} \\
   2 \text{ cm} \\
   1 \text{ cm}
   \end{array}
   \]

   b. 
   
   \[
   \begin{array}{c}
   \text{base 23 mm} \\
   12 \text{ mm} \\
   65 \text{ mm}
   \end{array}
   \]

   c. 
   
   \[
   \begin{array}{c}
   \text{base 70 mm} \\
   14 \text{ mm} \\
   6 \text{ mm}
   \end{array}
   \]
d. 

base 11 cm

---

ey.

base 44 m

---

f.

base 82 mm
2. Calculate the volume of the regular prisms described in the chart below. Be sure that you write the correct units of measurement in your answer. Use the blank space at the bottom of the page to do your calculations.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Base</th>
<th>Width</th>
<th>Height</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25 cm</td>
<td>30 cm</td>
<td>42 cm</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>14 m</td>
<td>11 m</td>
<td>24 m</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>65 mm</td>
<td>70 mm</td>
<td>82 mm</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>35 cm</td>
<td>25 cm</td>
<td>28 cm</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>48 m</td>
<td>12 m</td>
<td>34 m</td>
<td></td>
</tr>
</tbody>
</table>
Surface Area

The surface area of a rectangular prism is the sum of the areas of all six of its faces. Remember that area is calculated in square units.

Front face: This is the side you see as a rectangle.
\[ A = b \times h \]
\[ = 30 \times 20 \]
\[ = 600 \text{ cm}^2 \]

Back face: This side is not visible, but it is the side opposite the front face. It has the same area as the front face (600 cm²).

End: This is shown as the shaded part of the figure.
\[ A = b \times h \]
\[ = 10 \times 20 \]
\[ = 200 \text{ cm}^2 \]

Other end: This is not visible, but it is the side opposite the shaded end. It has the same area as the shaded end (200 cm²).

Top face: This face is shown on the figure.
\[ A = b \times h \]
\[ = 10 \times 30 \]
\[ = 300 \text{ cm}^2 \]

Bottom face: This face is not visible, but it is the side opposite the top face. It has the same area as the top face (300 cm²).

Calculate the surface area by adding the areas of all sides.
Total area of this rectangular prism is
\[ 600 + 600 + 200 + 200 + 300 + 300 = 2200 \text{ cm}^2 \]
Questions

1. Find the surface area of the following rectangular prisms. The units of measurement for area are square units (mm², cm², or m²).

a. 
   ![Rectangular prism with base 5 cm, height 1 cm, and width 2 cm]

b. 
   ![Rectangular prism with base 23 mm, height 12 mm, and width 65 mm]

c. 
   ![Rectangular prism with base 11 cm and height 14 m]

d. 
   ![Rectangular prism with base 44 m, height 26 m, and width 14 m]
2. Draw three rectangular prisms according to the measurements. Calculate the surface area for each regular prism. Be sure to write the correct units of measurement in your answer. Label each drawing with the corresponding letter.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Base</th>
<th>Width</th>
<th>Height</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25 cm</td>
<td>30 cm</td>
<td>42 cm</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>14 mm</td>
<td>11 mm</td>
<td>24 mm</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>48 mm</td>
<td>12 mm</td>
<td>37 mm</td>
<td></td>
</tr>
</tbody>
</table>
Problem Solving

1. A Grade Six classroom has the shape of a rectangular prism. The floor is 12 m long and 10 m wide. The walls are 2.5 m high. The students want to renovate their classroom. Below are some questions that must be answered for the renovations. Draw a diagram of the room and label the dimensions.

a. What is the surface area of the floor?
b. If the cost of new floor tiles (including installation) is $3.75 per square metre, what will be the cost of installing new floor tiles?

c. What is the surface area of the four walls? (Calculate this as if there are no windows or doors in this classroom.)

d. If one litre of paint covers an area of 20 m², how many litres of yellow paint are needed to paint the walls? (Round your answer to the nearest litre.) Always show your work!
e. If the cost of paint is $7.95 per litre, how much will the paint cost for the classroom? Always show your work and give your final answer in a complete sentence.

f. The ceiling panels must be replaced. If each new ceiling panel is a rectangle that is 100 cm by 50 cm, how many panels are needed to replace the existing ceiling tiles?
Homework Assignment

1. Samuel has a large fish tank. The dimensions of the tank are as follows.

   base = 90 cm, width = 60 cm, height = 50 cm

   a. What volume of water is needed to completely fill the fish tank? Give the answer in litres. (1L = 1 000 cm³)

   b. If each tropical fish needs 5000 cm³ of space for healthy living, what is the maximum number of fish that can be put in the fish tank at one time?
2. Sharon’s mother entered a contest and won a new S.U.V. The fuel tank in the S.U.V. is a rectangular prism. The dimensions of the fuel tank are 96 cm by 50 cm by 15 cm.

a. What is the volume of the fuel tank?

b. 1L = 1 000 cm³. How many litres of fuel are required to fill the tank of the S.U.V?

c. If gasoline costs 86 cents per litre, how much will a complete fill-up of the fuel tank in the new S.U.V. cost?
Self-Evaluation

Ask yourself some important questions. Write your answers in sentences for your teacher.

1. In this lesson, what part of your work was excellent?

2. In this lesson, what part of your work needs improvement?

3. If you want help for some of the work in this lesson, ask your teacher in this space.